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Abstract8

Rates, percentages, and proportions are common outcomes in psychology and the
social sciences. These outcomes are often analyzed using models that assume nor-
mality, but this practice overlooks important features of the data, such as their nat-
ural bounds at 0 and 1. As a result, estimates can become distorted. In contrast,
treating such outcomes as Beta-distributed respects these limits and can yield more
accurate estimates. Despite these advantages, the use of Beta models in applied re-
search remains limited. Our goal is to provide researchers with practical guidance
for adopting Beta regression models, illustrated with an example drawn from the
psychological literature. We begin by introducing the Beta distribution and Beta
regression, emphasizing key components and assumptions. Next, using data from a
learning and memory study, we demonstrate how to fit a Beta regression model in R
with the Bayesian package brms and how to interpret results on the response scale.
We also discuss model extensions, including zero-inflated, zero- and one-inflated,
and ordered Beta models. Basic familarity with regression modeling and R is as-
sumed. To promote wider adoption of these methods, we provide detailed code and
materials at https://github.com/jgeller112/Beta_regression_tutorial.
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1

Introduction2

Many key outcomes in psychological research are naturally expressed as proportions or percentages.3

Examples include the proportion of correct responses on a test (e.g., Kornell & Bjork, 2008), the proportion4

of time a participant fixates on a particular stimulus in an eye-tracking task (e.g., James et al., 2025), or the5

proportion of respondents agreeing with a given statement or belief (e.g., Costello et al., 2024). Consider,6

for instance, a memory experiment in which participants read a short passage, complete a brief distractor7

task, and then take a final memory test consisting of 10 short‑answer questions. If each question carries a8

different point value (e.g., question 1 is worth 4 points, question 2 is worth 1 point), a meaningful outcome9

measure could be the proportion of points earned for each question relative to its maximum possible value.10

A key question arises from this example: how should proportional outcomes be analyzed? Re-11

searchers frequently default to linear models that assume Gaussian (normal) distributions, such as t-tests,12

ANOVAs, and linear regression. However, these models make strong assumptions: (1) residuals are nor-13

mally distributed, (2) the outcome is unbounded (from −∞ to ∞), and (3) variance is constant across the14

range of the data. These assumptions are rarely satisfied in practice (Sladekova & Field, 2024), and they15

are especially ill-suited for proportional outcomes, which are bounded between 0 and 1 and often exhibit16

heteroscedasticity—non-constant variance, particularly near the boundaries (Ferrari & Cribari-Neto, 2004;17

Paolino, 2001; Smithson & Verkuilen, 2006). Violating these assumptions can lead to biased estimates and18

spurious inferences, especially when many observations cluster near 0 or 1.19

In some cases, it is possible to use a generalized version of the linear model (GLM) that relaxes20

the assumption of normality. For instance, binomial and Bernoulli models—often referred to as logistic21

regression when paired with a logit link—are well-suited for binary outcomes (e.g., 0 or 1) or success counts22

out of a fixed number of trials. However, these models require discretized data and may perform poorly23

when the data are continuous proportions or exhibit excess variability (i.e., overdispersion), especially near24

the scale’s boundaries.25

The challenges of analyzing proportional data are not new (see Bartlett, 1936). Fortunately, several26

existing approaches address the limitations of commonly usedmodels. One such approach is Beta regression,27

an extension of the generalized linear model that employs the Beta distribution (Ferrari &Cribari-Neto, 2004;28

Paolino, 2001). Beta regression offers a flexible and robust solution formodeling proportional data directly by29

accounting for boundary effects and over-dispersion, making it a valuable alternative to traditional binomial30

models. This approach is particularly well-suited for psychological research because it can handle both31

the bounded nature of proportional data and the non-constant variance often encountered in these datasets32

(Sladekova & Field, 2024). In addition, the direct modeling of proportions allows comparability across tasks33

and scales, and can be particularly valuable when only the proportional data is available, as is often the case34

with secondary data that lack item-level structure or point values.35

While in this paper we will focus on proportional-responses that lie between 0 and 1–it is important36

to note that our analysis applies to any bounded continuous scale. Any bounded scale can be mapped to lie37

within 0 and 1 without resulting in a loss of information as the transformation is linear.1 Consequently, a38

scale that has natural end points of -1,234 and +8,451–or any other end points on the real number line short39

of infinity—can be modeled using the approaches we describe in this paper.40

1Specifically, for any continuous bounded variable 𝑥, we can rescale this variable to lie within 0 and 1 by using the formula
𝑥′ = 𝑥−min(𝑥 )

max(𝑥 )−min(𝑥 ) where 0 ≤ 𝑥′ ≤ 1.
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A Beta Way Is Possible41

With the combination of open-source programming languages like R (R Core Team, 2024) and their42

user-developed extensions, analyses such as Beta regression have become increasingly accessible. Yet, adop-43

tion of these methods–particularly in psychology–remains limited. One reasonmay be the lack of informative44

examples that directly apply to psychological research. Although recent years have seen a surge of interest in45

Beta regression (Bendixen & Purzycki, 2023; Coretta & Bürkner, 2025; Heiss, 2021; Smithson & Verkuilen,46

2006; Vuorre, 2019), its adoption in psychology remains limited.47

While previous tutorials have discussed Beta regression, most have been limited in scope–focusing48

either on the basic model or offering only brief mentions of more applicable alternatives. This tutorial aims49

to fill that gap by offering a comprehensive and practical tutorial of Beta regression and its extensions. In50

addition to covering the standard Beta model, we walk through its extensions such as zero-inflated, zero-one-51

inflated, and ordered Beta regression. These models are important for researchers dealing with boundary52

values (e.g., exact 0s or 1s) or ordinal response structures.53

Beyond model specification, we place strong emphasis on interpreting results on the response scale–54

that is, in terms of probabilities and proportions–rather than relying on often difficult to interpret parameters.55

This focus makes the models more accessible and meaningful for psychological applications, where effects56

are often easier to communicate when framed on the original scale of the outcome (e.g., changes in recall57

accuracy or task performance). Throughout, we provide reproducible code and annotated examples to help58

readers implement and interpret these models in their own work.59

We begin the tutorial with a non-technical overview of the Beta distribution and its core parameters.60

We then walk through the process of estimating Beta regression models using the R package brms (Bürkner,61

2017), illustrating each step with applied examples. To guide interpretation, we emphasize coefficients,62

predicted probabilities, andmarginal effects calculated using the marginaleffects package (Arel-Bundock63

et al., 2024). We also introduce several useful extensions–zero-inflated (ZIB), zero-one-inflated (ZOIB), and64

ordered Beta regression–that enable researchers to model outcomes that include boundary values. Finally,65

all code and materials used in this tutorial are fully reproducible and available via our GitHub repository:66

https://github.com/jgeller112/Beta_regression_tutorial2.67

Beta Distribution68

Proportional data pose some challenges for standard modeling approaches: The data are bounded69

between 0 and 1 and often exhibit non-constant variance (heteroscedasticity) (Ferrari & Cribari-Neto, 2004;70

Paolino, 2001). Common distributions used within the generalized linear model frameworks often fail to71

capture these properties adequately, which can necessitate alternative modeling strategies.72

While we do not have time to delve fully into its derivation, the Beta distribution is a preferred73

distribution for this type of response because of certain unique properties. The Beta distribution is defined as74

a distribution of the uncertainty of probabilities, which must lie within 0 and 1. As a consequence, the Beta75

distribution is the maximum entropy distribution for any bounded continuous random variable, which means76

2In this article, we try to limit code where possible; however, the online version has all the code needed to reproduce all analyses
herein. Furthermore, to promote transparency and reproducibility, the tutorial was written in R version 4.5.1 (R Core Team (2024))
using Quarto (v.1.5.54), an open-source publishing system that allows for dynamic and static documents. This allows figures, tables,
and text to be programmatically included directly in the manuscript, ensuring that all results are seamlessly integrated into the
document. In addition, we use the rix (Rodrigues & Baumann, 2025) R package which harnesses the power of the nix (Dolstra &
contributors, 2006) ecosystem to to help with computational reproducibility. Not only does this give us a snapshot of the packages
used to create the current manuscript, but it also takes a snapshot of system dependencies used at run-time. This way reproducers
can easily re-use the exact same environment by installing the nix package manager and using the included default.nix file to set up
the right environment. The README file in the GitHub repository contains detailed information on how to set this up to reproduce
the contents of the current manuscript, including a video.

https://github.com/jgeller112/Beta_regression_tutorial
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that the Beta distribution can represent the full range of possibilities of such a scale.3 As a consequence, if we77

have a continuous scale with upper and lower bounds–and no other special conditions–the Beta distribution78

will in principle provide a very good approximation of the uncertainty of the scale.79

Typically, the expected value (or mean) of the response variable is the central estimand scholars want80

to estimate. A model should specify how this expected value depends on explanatory variables through two81

main components: a linear predictor, which combines the explanatory variables in a linear form (𝑎 + 𝑏1𝑥1 +82

𝑏2𝑥2, etc.), and a link function, which connects the expected value of the response variable to the linear83

predictor (e.g, 𝐸 [𝑌 ] = 𝑔(𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2)). In addition, a random component specifies the distribution84

of the response variable around its expected value (such as Poisson or binomial distributions, which belong85

to the exponential family) (Nelder & Wedderburn, 1972). Together, these components provide a flexible86

framework for modeling data with different distributional properties.87

The Beta distribution is continuous and restricted to values between 0 and 1 (exclusive). Its two88

parameters–commonly called shape1 (𝛼) and shape2 (𝛽)–govern the distribution’s location, skewness, and89

spread. By adjusting these parameters, the distribution can take many functional forms (e.g., it can be sym-90

metric, skewed, U-shaped, or even approximately uniform; see Figure 1).91

To illustrate, consider a test question worth seven points. Suppose a participant scores five out of92

seven. The number of points received (5) can be treated as 𝛼, and the number of points missed (2) as 𝛽. The93

resulting Beta distribution would be skewed toward higher values, reflecting a high performance (yellow line94

in Figure 1; “Beta(5, 2)”). Reversing these values would produce a distribution skewed toward lower values,95

representing poorer performance (green line in Figure 1; “Beta(2, 5)”).96

Figure 1

Beta distributions with different shape1 and shape2 parameters.

I Can’t Believe It’s Not Beta97

While the standard parameterization of the Beta distribution uses 𝛼 and 𝛽, a reparameterization to98

a mean (𝜇) and precision (𝜙) is more useful for regression models. The mean represents the expected value99

of the distribution, while the dispersion, which is inversely related to variance, reflects how concentrated100

3Technically, this maximum entropy condition is satisfied because the Beta(1,1) distribution is uniform over its support.
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the distribution is around the mean, with higher values indicating a narrower distribution and lower values101

indicating a wider one. The connections between the Beta distribution’s parameters are shown in Equation 1.102

Importantly, the variance depends on the average value of the response because uncertainty intervals need to103

adjust for how close the value of the response is to the boundary.104

Shape 1: 𝑎 = 𝜇𝜙

Shape 2: 𝑏 = (1 − 𝜇)𝜙
Mean: 𝜇 =

𝑎

𝑎 + 𝑏
Precision: 𝜙 = 𝑎 + 𝑏

Variance: 𝑣𝑎𝑟 =
𝜇 · (1 − 𝜇)

1 + 𝜙

(1)

Thus, Beta regression allows modeling both the mean and precision of the outcome distribution. To105

ensure that 𝜇 stays between 0 and 1, we apply a link function, which allows linear modeling of the mean on106

an unbounded scale. A common link-function choice is the logit, but other functions such as the probit or107

complementary log-log are possible.108

The logit function, logit(𝜇) = log
(

𝜇
1−𝜇

)
links the mean to log-odds which are unbounded, making109

linear modeling possible. The inverse of the logit, called the logistic function, maps the linear predictor 𝜂110

back to the original scale of the data
(
𝜇 = 1

1+𝑒−𝜂

)
. Similarly, the strictly positive dispersion parameter is111

usually modeled through a log link function, ensuring it remains positive.112

By accounting for the observations’ natural limits and non-constant variance across different val-113

ues, the Beta distribution is useful in psychology where outcomes like performance rates or response scales114

frequently exhibit these features.115

Bayesian Approach to Beta Regression116

Beta regression models can be estimated with both frequentist and Bayesian methods. We adopt a117

Bayesian framework because it makes estimating and interpreting more complex models easier (Gelman et118

al., 2013; Johnson et al., 2022; McElreath, 2020). Generally speaking, most Bayesian analyses can also be119

implemented with frequentist methods like maximum likelihood, but more complex techniques may require120

adjustments like bootstrapping. The main limitation of Bayesian modeling is that it is slower than frequentist121

approaches, but we note that modern Bayesian computation engines are reasonably fast and that explanatory122

modeling necessarily emphasizes deriving appropriate estimands over computational convenience. We use123

the R package brms (Bürkner, 2017), a high-level interface to the probabilistic programming language Stan124

(Team, 2023), because it uses standard R regression formula syntax but extends its scope while remaining ac-125

cessible for non-expert users. The package also implements parallel processing that can dramatically shorten126

computational times for larger datasets.127

There are several important differences between our Bayesian analysis and the frequentist methods128

readers may be more familiar with—most notably, the absence of t- and p-values. To estimate models, the129

brms package uses Stan’s computational algorithms to draw random samples from the posterior distribution,130

which represents uncertainty about the model parameters. This posterior is conceptually analogous to a131

frequentist sampling distribution.132

By default, Bayesian models run 4 chains with 2,000 iterations each. The first 1,000 iterations per133

chain are warmup and are discarded. The remaining 1,000 iterations per chain are retained as posterior134

draws, yielding 4,000 total post-warmup draws across all chains. From these draws, we can compute the135

posterior mean (analogous to a frequentist point estimate) and the 95% credible interval (Cr.I.), which is136

often compared to a confidence interval. In addition, we report the probability of direction (pd), which137

reflects the probability that a parameter is strictly positive or negative. When a uniform prior is used (all138

values equally likely in the prior), a pd of 95%, 97.5%, 99.5%, and 99.95% corresponds approximately to139

two-sided p-values of .10, .05, .01, and .001 (i.e., pd ≈ 1 − p/2 for symmetric posteriors with weak/flat priors)140
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(see Figure 2 for an illustrative comparison). For directional hypotheses, the pd can be interpreted as roughly141

equivalent to one minus the p-value (Marsman & Wagenmakers, 2016).142

Figure 2

A Bayesian posterior distribution (assuming a uniform prior) centered at a point estimate chosen so that the
probability of direction (pd) equals 0.95, and a frequentist sampling distribution (under the null; centered
at 0). In the Bayesian posterior distribution, the blue area represents the pd, and the red area represents the
remaining 1 − pd of the distribution. In the frequentist sampling distribution, the red tail areas represent the
rejection region at α = 0.10. In this example, the posterior mean lies exactly at the 1 − 𝛼

2 quantile of the
null sampling distribution. For symmetric posteriors with flat priors, the pd is numerically equivalent to the
one-sided 𝑝-value.

For reasons of space, we refer readers unfamiliar to Bayesian data analysis to several existing books143

on the topic (Gelman et al., 2013; Kruschke, 2015; McElreath, 2020). In addition, we assume readers are144

familiar with R, but those in need of a refresher should find Wickham et al. (2023) useful.145

Beta Regression Tutorial146

Example Data147

Throughout this tutorial, we analyze data from a memory experiment examining whether the flu-148

ency of an instructor’s delivery affects recall performance (Wilford et al., 2020, Experiment 1A). Instructor149

fluency—marked by expressive gestures, dynamic vocal tone, and confident pacing—has been shown to150
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Table 1

Four observations from Wilford et al. (2020). Accuracy refers to the proportion of correctly recalled idea
units.

Participant Fluency Accuracy
64 Disfluent 0.10
30 Fluent 0.60
12 Fluent 0.10
37 Fluent 0.35

influence students’ perceptions of learning, often leading learners to rate fluent instructors more favorably151

(Carpenter et al., 2013). However, previous research suggests that these impressions do not reliably translate152

into improved memory performance (e.g., Carpenter et al., 2013; Toftness et al., 2017; Witherby & Car-153

penter, 2022). In contrast, Wilford et al. (2020) found that participants actually recalled more information154

after watching a fluent instructor compared to a disfluent one. This surprising finding makes the dataset a155

compelling case study for analyzing proportion data, as recall was scored out of 10 possible idea units per156

video.157

In Experiment 1A, participants watched two short instructional videos, each delivered either fluently158

or disfluently. Fluent videos featured instructors with smooth delivery and natural pacing, while disfluent159

videos included hesitations, monotone speech, and awkward pauses. After a distractor task, participants160

completed a free recall test, writing down as much content as they could remember from each video within161

a three-minute window. Their recall was then scored for the number of idea units correctly remembered.162

Listing 1 Data needed to run examples

# get data here from github
url <- str_glue(

"https://raw.githubusercontent.com/jgeller112/",
"Beta_regression_tutorial/refs/heads/main/",
"manuscript/data/fluency_data.csv"

)
fluency_data <- read.csv(url)

Our primary outcome variable is the proportion of idea units recalled on the final test, calculated163

by dividing the number of correct units by 10. We show a sample of these data in Table 1. The dataset164

can be downloaded from Github (Listing 1). Because this is a bounded continuous variable (i.e., it ranges165

from 0 to 1), it violates the assumptions of typical linear regression models that treat outcomes as normally166

distributed. Despite this, it remains common in psychological research to analyze proportion data using167

models that assume normality. In what follows, we reproduce Wilford et al. (2020)’s analysis and then168

re-analyze the data using Beta regression and highlight how it can improve our inferences.169

Reanalysis of Wilford et al. Experiment 1A170

In their original analysis of Experiment 1A, Wilford et al. (2020) compared memory performance171

between fluent and disfluent instructor conditions using a traditional independent-samples t-test. They found172
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that participants who watched the fluent instructor recalled significantly more idea units than those who173

viewed the disfluent version (see Figure 3).174

Figure 3

Raincloud plot depicting accuracy distributions for the Fluent and Disfluent conditions. Each condition
shows individual data points, a density plot, and summary statistics to illustrate variability and central ten-
dency.

We first replicate this analysis in a regression framework using brms. We model final test accuracy–175

the proportion of correctly recalled idea units across the videos–as the dependent variable. Our predictor is176

instructor fluency, with two levels: Fluent and Disfluent. We use treatment (dummy) coding, which is the177

default in R. This coding scheme sets the first level of a factor (in alphabetical order) as the reference level.178

In this case, Disfluent is the reference, and the coefficient for Fluent reflects the contrast between fluent and179

disfluent instructor conditions.180

Regression Model181

We first start by loading the brms (Bürkner, 2017) and cmdstanr (Gabry et al., 2024) packages182

(Listing 2). We use the cmdstanr backend for Stan (Team, 2023) because it’s faster than the default used to183

run models (i.e., rstan),4 though all of these models can also be fit with brms defaults.184

Listing 2 Load the brms and cmdstanr packages

library(brms)
library(cmdstanr)

4In order to use the cmdstanr backend you will need to first install the package (see https://mc-stan.org/cmdstanr/) and
also run cmdstanr::install_cmdstan() if you have not done so already.
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Table 2

Bayesian regression summaries for each model
Parameter Stat Bayesian

LM
Beta

Regression
ZIB ZOIB Ordered

Beta

b_Intercept Mean 0.257 -0.830 -0.832 -0.831 -0.865

Cr.I [0.199, 0.315] [-1.087, -0.55] [-1.094, -0.552] [-1.098, -0.559] [-1.119, -0.596]

pd 1.000*** 1.000*** 1.000*** 1.000*** 1.000***

b_Fluency Mean 0.085 0.204 0.204 0.203 0.262

Cr.I [0.002, 0.166] [-0.155, 0.539] [-0.139, 0.545] [-0.147, 0.541] [-0.07, 0.598]

pd 0.977* 0.875 0.872 0.880 0.936

b_phi_Intercept Mean - 1.609 1.601 1.604 1.609

Cr.I - [1.193, 2] [1.187, 1.988] [1.183, 1.989] [1.179, 1.993]

pd - 1.000*** 1.000*** 1.000*** 1.000***

b_phi_Fluency Mean - 0.420 0.425 0.426 0.408

Cr.I - [-0.143, 0.993] [-0.158, 0.994] [-0.126, 0.994] [-0.156, 0.983]

pd - 0.931 0.926 0.930 0.918

b_zi_Intercept Mean - - -1.673 - -

Cr.I - - [-2.46, -0.978] - -

pd - - 1.000*** - -

b_zi_Fluency Mean - - -2.137 - -

Cr.I - - [-4.618, -0.34] - -

pd - - 0.992** - -

b_zoi_Intercept Mean - - - -1.549 -

Cr.I - - - [-2.339, -0.859] -

pd - - - 1.000*** -

b_zoi_Fluency Mean - - - -2.201 -

Cr.I - - - [-4.449, -0.465] -

pd - - - 0.996*** -

b_coi_Intercept Mean - - - -2.022 -

Cr.I - - - [-4.408, -0.287] -

pd - - - 0.991** -

b_coi_Fluency Mean - - - 0.245 -

Cr.I - - - [-6.946, 5.716] -

pd - - - 0.571 -

Note. Link functions: b_mean = logit; b_phi = log; b_zoi (zero-one inflation) = logit; b_coi (conditional
one-inflation) = logit. Asterisks reflect approximate two-sided p-values derived from the posterior pd. pd ≥

0.975 (p ≤ .05) = *; pd ≥ 0.990 (p ≤ .01) = **; pd ≥ 0.998 (p ≤ .001) = ***.
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Listing 3 Fitting a gaussian model with brm().

bayes_reg_model <- brm(
Accuracy ~ Fluency,
data = fluency_data,
family = gaussian(),
file = "model_reg_bayes"

)

We fit the model using the brm() function from the brms package (Listing 3). Although not shown185

here, we ran the models using four chains (the default), executed in parallel across four cores. When the186

model is run in Listing 3, the model summary output will appear in the R console. The output from187

bayes_reg_model shows each parameter’s posterior summary: The posterior distribution’s mean and stan-188

dard deviation (analogous to the frequentist standard error) and its 95% credible interval, which indicate the189

95% of the most credible parameter values. In brms, the reported Cr.I is an equal-tailed interval, meaning190

that the probability mass excluded from the interval is split equally between the lower and upper tails. Ad-191

ditionally, the output indicates numerical estimates of the sampling algorithm’s performance: Rhat should192

be close to one, and the ESS (effective sample size) metrics should be as large as possible given the number193

of iterations specified (default is 4000). Generally, ESS >= 1000 is recommended (Bürkner, 2017). For the194

models we present in this paper, convergence is trivial with standard linear models, though we note that these195

metrics are still important to pay attention to in case of model mis-fit.196

Our main question of interest is: Does instructor fluency have an effect on final test performance?197

In order to answer this question, we will have to look at the output summary produced by Listing 3. the198

Intercept refers to the posterior mean accuracy in the disfluent condition, M = 0.257 , as fluency was199

dummy-coded. The fluency coefficient (FluencyFluent) reflects the mean posterior difference in recall200

accuracy between the fluent and disfluent conditions: b = 0.084. The 95% credible interval for this estimate201

spans from -0.004 to 0.169. These values are shown in the “95% Cr.I” columns of the output. These results202

closely mirror the findings reported by Wilford et al. (2020) (Experiment 1A).203

Family: gaussian204

Links: mu = identity; sigma = identity205

Formula: Accuracy ~ Fluency206

Data: fluency_data (Number of observations: 96)207

208

Regression Coefficients:209

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS210

Intercept 0.26 0.03 0.20 0.31 1.00 3841 3043211

FluencyFluent 0.08 0.04 -0.00 0.17 1.00 3840 2639212

213

Further Distributional Parameters:214

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS215

sigma 0.21 0.02 0.18 0.24 1.00 3462 2603216

The output also includes the effective sample size (ESS) and R̂ (R-hat) values, both of which fall217

within acceptable ranges, indicating good model convergence. Throughout the tutorial, we focus primarily218

on posterior mean estimates and their 95% credible intervals. In addition, we report the pd measure in the219

main summary table (Table 2), provided by the bayestestR package (Makowski, Ben-Shachar, Chen, et220
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al., 2019; Makowski, Ben-Shachar, & Lüdecke, 2019). This measure offers an intuitive parallel to p-values,221

which many readers may find familiar. For example, the fluency effect has a pd of .977, indicating a high222

probability that the effect is positive rather than negative (akin to p < .05).223

Importantly, pd does not indicate whether an effect is meaningfully different from a point224

value—it only reflects the proportion of the posterior in one direction. To address questions of prac-225

tical significance, we encourage readers to consider the Region of Practical Equivalence (ROPE) with226

the Cr.Is (Kruschke, 2015). Unlike a hypothesis test of a point null (e.g., exactly zero), the ROPE de-227

fines a range of values that are deemed too small to be of substantive importance. As a rule of thumb228

(see Kruschke, 2018), if more than 95% of the posterior distribution lies inside the ROPE, the effect229

can be considered practically equivalent to that negligible range. If less than 5% lies inside, the effect230

can be considered meaningfully different. Intermediate cases are typically labeled undecided.231

The rope() function in the bayestestR package computes the proportion of the posterior232

within the ROPE to facilitate this evaluation. By default, from bayesian models fit via brms the pack-233

age determines a ROPE based on the data (roughly reflecting “negligible” effects), but these defaults234

should be used cautiously. The choice of ROPE should ultimately be guided by theoretical considera-235

tions, prior research, and the substantive context of the study. In ?@lst-rope, we show how to compute236

this using bayestestR. Running the function with default settings suggests that less than 5% of the237

posterior distribution lies within the default ROPE (indicating the effect is larger than .02) (see Fig-238

ure 4). Going forward we do not include a dicussion of ROPE values, but we encourage readers to239

adopt it in their own research when appropriate.240

Figure 4

Posterior distribution for the fluency effect showing the ROPE(shaded area) with 95% credible interval (or-
ange) and 100% credible interval (blue). The percentage indicates the proportion of the posterior within the
ROPE.
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Beta Regression241

Wilford et al. (2020) observed that instructor fluency impacts actual learning, using a t-test. But242

recall this approach assumes normality of residuals and homoscedacity. These assumptions are unrealistic243

when the response values approach the scale boundaries (Sladekova & Field, 2024). Does the data we have244

meet those assumptions? We can use the function check_model() from easystats (Lüdecke et al., 2022)245

to check our assumptions easily. The code in Listing 4 automatically produces Figure 5. We can see some246

issues with our data. Specifically, there appears to be violations of constant variance across the values of247

the scale (homoskedasticity). In plain terms, this type of model mis-specfication means that a standard OLS248

model can predict non-sensical values outside the bounds of the scale.249

Listing 4 Checking assumptions with the check_model() from easystats package .

check_model(bayes_reg_model, check = c("homogeneity", "normality"))

Figure 5

Two assumption checks for our OLS model: Normality (left) and Homoskedasticity (right)

We can also examine how well the data fits the model by performing a posterior predictive check250

using the pp_check() function from brms. A posterior predictive check involves looking at multiple draws251

or repetitions from the posterior distribution and plotting it against the observed data. Ideally, the predictive252

draws (the light blue lines) should show reasonable resemblance with the observed data (dark blue line). In253

our example (see Figure 6 (A)) the model-predicted density is slightly too peaked and narrow compared to254

the data. In addition, some of the draws extend into negative accuracy values.255

Given the outcome variable is proportional, one solution would be to run a Beta regression model.256

Again, we can create the Beta regression model in brms. In brms, we model each parameter independently.257
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Figure 6

The plots show 100 posterior predicted distributions with the label yrep (light blue), the distribution of ac-
curacy in dark blue for regular regression (A) , Beta regression (B), and ZIB (C) models

Recall from the introduction that in a Beta model wemodel two parameters–𝜇 and 𝜙. We can easily do this by258

using the bf() function from brms (Listing 5). bf() facilitates the specification of several sub-models within259

the same formula call. We fit two formulas, one for 𝜇 and one for 𝜙 and store it in the model_Beta_bayes260

object below. In the below bf() call, we are modeling Fluency as a function of Accuracy only for the 𝜇261

parameter. For the 𝜙 parameter, we are only modeling the intercept value. This is saying dispersion does not262

change as a function of fluency.263

To run our Beta regression model, we need to exclude 0s and 1s in our data set. If we try to run264

a model with our data data_fluency we get an error: Error: Family 'Beta' requires response265

greater than 0. This is because the Beta distribution only supports observations in the 0 to 1 interval266

excluding exact 0s and 1s. We need make sure there are no 0s and 1s in our dataset.267

The dataset contains nine 0s and one 1. One approach is to nudge our 0s towards .01 and our 1s268

to .99, or apply a special formula (Smithson & Verkuilen, 2006) so values fall within the [0, 1] interval.269

We implore readers not to engage in this practice. Kubinec (2022) showed that this practice can result in270

serious distortion of the outcome as the sample size � grows larger, resulting in ever smaller values that are271

“nudged”. Because the Beta distribution is a non-linear model of the outcome, values that are very close to272

the boundary, such as 0.00001 or 0.99999, will be highly influential outliers.To run this Beta model we will273

remove the 0s and 1s, and later in this article we will show how to jointly model these scale end points with274

the rest of the data. The model from Listing 5 uses a transformed data_fluency object (called data_Beta)275

where 0s and 1s are removed. When we run this code we should not get an error.276
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Listing 5 Fitting a Beta model without 0s and 1s in brm().

# set up model formual
model_Beta_bayes <- bf(

Accuracy ~ Fluency, # fit mu model
phi ~ 1 # fit phi model

)

# transform 0 to 0.1 and 1 to .99
data_Beta <- fluency_data |>

filter(
Accuracy != 0,
Accuracy != 1

)

Beta_brms <- brm(
model_Beta_bayes,
data = data_Beta,
family = Beta(),
file = "model_Beta_bayes_reg_01"

)

Model Parameters277

In Table 2 under the Beta Regression column, the first set of coefficients represent how factors in-278

fluence the 𝜇 parameter estimates (which is the mean of the Beta distribution), which are labeled with an279

underscore b_. These coefficients are interpreted on the scale of the logit, meaning they represent linear280

changes on a nonlinear space. The intercept term (b_Intercept) represents the log odds of the mean on281

accuracy for the fluent instructor. Log odds that are negative indicate that it is more likely a “success” (like282

getting the correct answer) will NOT happen than that it will happen. Similarly, regression coefficients in283

log odds forms that are negative indicate that an increase in that predictor leads to a decrease in the predicted284

probability of a “success”.285

The other component we need to pay attention to is the dispersion or precision parameter coefficients286

labeled as b_phi in Table 2. The dispersion (𝜙) parameter tells us how precise our estimate is. Specifically,287

𝜙 in Beta regression tells us about the variability of the response variable around its mean. Specifically, a288

higher dispersion parameter indicates a narrower distribution, reflecting less variability. Conversely, a lower289

dispersion parameter suggests awider distribution, reflecting greater variability. Themain difference between290

a dispersion parameter and the variance is that the dispersion has a different interpretation depending on the291

value of the outcome, as we show below. The best way to understand dispersion is to examine visual changes292

in the distribution as the dispersion increases or decreases.293

Understanding the dispersion parameter helps us gauge the precision of our predictions and the con-294

sistency of the response variable. In Beta_brms we only modeled the dispersion of the intercept. When 𝜙 is295

not specified, the intercept is modeled by default (see Table 2). The intercept under the precision heading is296

not that interesting. It represents the overall dispersion in the outcome across all conditions. Instead, we can297

model different dispersions across levels of the Fluency factor. To do so, we add Fluency to the phi model298

in bf(). We model the precision (phi) of the Fluency factor by using a ~ and adding factors of interest to299

the right of it (Listing 6).300
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Listing 6 Fitting Beta model with dispersion in brm().

model_Beta_bayes_disp <- bf(
Accuracy ~ Fluency, # Model of the mean
phi ~ Fluency # Model of the precision

)

Beta_brms_dis <- brm(
model_Beta_bayes_disp,
data = data_Beta,
family = Beta(),
file = "model_Beta_bayes_dis_run01"

)

Table 3

Beta regression model summary for fluency factor with 𝜙 parameter exponentiated
Parameter Mean 95% Cr.I pd
b_phi_Intercept 4.95 [3.201, 7.253] 1
b_phi_FluencyFluent 1.53 [0.864, 2.766] 0.927

Table 2 displays the model summary with the precision parameter added to our model as a function301

of fluency. It is important to note that the estimates are logged and not on the original scale (this is only the302

case when additional parameters are modeled). To interpret them on the original scale, we can exponentiate303

the log-transformed value–this transformation gets us back to our original scale. In the below model call, we304

set exponentiate = TRUE.305

Beta_model_dis_exp <- Beta_brms_dis |>
model_parameters(exponentiate = TRUE, centrality = "mean")

The 𝜙 intercept represents the precision of the fluent condition. The 𝜙 coefficient for306

FluencyFluent represents the change in that precision for performance between the fluent vs. disfluent307

conditions. The credible interval does not include 0, meaning that zero is not among the 95% most credible308

parameter values.309

It is important to note that these estimates are not the same as the marginal effects we discussed310

earlier. Changes in dispersion affect the spread or variability of the response distribution without necessarily311

altering its mean. This makes dispersion particularly relevant for research questions that focus on features312

of the distribution beyond the average—such as how concentrated responses are. For instance, high disper-313

sion might indicate that individuals cluster at the extremes (e.g., very high or very low ratings), suggesting314

clustering in the outcome.315

A critical assumption of the GLM is homoscedasticity, which means constant variance of the errors.316

WIth Beta regression model we can include a dispersion parameter for Fluency. Properly accounting for dis-317

persion is crucial because it impacts the precision of our mean estimates and, consequently, the significance318

of our coefficients. The inclusion of dispersion in the our model increased the uncertainty of the 𝜇 coefficient319

(see Figure 7). This suggests that failing to account for the dispersion of the variables might lead to biased320

estimates. This highlights the potential utility of an approach like Beta regression over a traditional approach321
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as Beta regression can explicitly model dispersion and address issues of heteroscedasticity.322

It is only necessary to model the dispersion with covariates when there is reason to believe that323

this variation is substantively relevant to the research question. In case there is uncertainty about the best324

model, a relatively agnostic approach would be to compare models, for example with leave one out (loo)325

cross validation, to examine if a dispersion parameter should be considered in our model.5326

Figure 7

Comparison of posterior distributions for the risk difference in fluency: Simple model (no dispersion for
Fluency) vs. complex model with dispersion

Predicted Probabilities327

Parameter estimates are usually difficult to interpret on their own. We argue that researchers should328

not spend too much time interpreting raw coefficients from non-linear models. We report them in this tutorial329

for completeness. Instead researchers should discuss the effects of the predictor on the actual outcome of330

interest (in this case the 0-1 scale). The logit link allows us to transform back and forth between the scale of a331

linear model and the nonlinear scale of the outcome, which is bounded by 0 and 1. By using the inverse of the332

logit, we can easily transform our linear coefficients to obtain average effects on the scale of the proportions333

or percentages, which is usually what is interesting to applied researchers. In a simple case, we can do this334

manually, but when there are many factors in your model this can be quite complex.335

In our example, we can use the plogis() function in base R to convert estimates from the log-odds336

(logit) scale to the probability scale. The intercept of our model is -0.918, which reflects the log-odds of337

the mean accuracy in the disfluent condition. If the estimated difference between the fluent and disfluent338

conditions is 0.24 on the log-odds scale, we first add this value to the intercept value (-0.918) to get the log-339

odds for the fluent condition: -0.83 + 0.20 = -0.63. We then use plogis() to convert both log-odds340

values to probabilities (Fluent = 35%, Disfluent = 30%).341

5The model fit statistic LOO-CV can be compared for any set of fitted brms models with the function loo().
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Table 4

Predicted probabilities for fluency factor.
Fluency Mean 95% Cr.I
Disfluent 0.297 [0.249, 0.349]
Fluent 0.353 [0.302, 0.409]

This is pretty easy to do manually, but when your model has many predictors, it can be quite cum-342

bersome. To help us extract predictions from our model and visualize them we will use a package called343

marginaleffects (Arel-Bundock et al., 2024) (see Listing 7). To get the proportions for each of our cat-344

egorical predictors on the 𝜇 parameter we can use the function from the package called predictions().345

These are displayed in Table 4. These probabilities match what we calculated above.346

Listing 7 Load the marginaleffects package.

library(marginaleffects)

Listing 8 Predictions from the Beta model for each level of Fluency.

predictions(
Beta_brms,
# need to specify the levels of the categorical predictor
newdata = datagrid(Fluency = c("Disfluent", "Fluent"))

)

For the Fluency factor, we can interpret Mean as proportions or percentages. That is, partici-347

pants who watched the fluent instructor scored on average 35% on the final exam compared to 30% for348

those who watched the disfluent instructor. We can also visualize these from marginaleffects using the349

plot_predictions() function (see Listing 9).350

Listing 9 Plot predicted probabilities using plot_predictions() from marginaleffects

Beta_plot <- plot_predictions(Beta_brms, by = "Fluency")

The plot_predictions() function will only display the point estimate with the 95% credible351

interval. However, Bayesian estimation methods generate distributions for each parameter. This approach352

allows visualizing full uncertainty estimates beyond points and intervals. Using the marginaleffects353

package, we can obtain samples from the posterior distribution with the posterior_draws() function (see354

Listing 10). We can then plot these results to illustrate the range of plausible values for our estimates at355

different levels of uncertainty (see Figure 8).356

Marginal Effects357

Marginal effects offer an interpretable way to quantify how changes in a predictor influence an out-358

come, while holding other factors constant in a specific manner. In recent years, there has been a thrust359
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Listing 10 Extracting posterior draws from the Beta regression model.

# Add a model identifier to each dataset
pred_draws_Beta <- avg_predictions(Beta_brms, variables = "Fluency") |>

posterior_draws()

Figure 8

Predicted probablity posterior distributions by fluency

to move away from reporting regression coefficients alone, focusing instead on estimates that are eas-360

ier to interpret and communicate—particularly in non-linear models [McCabe et al. (2021); Rohrer361

and Arel-Bundock (2025);@kim2022]. Technically, marginal effects are computed as partial derivatives362

for continuous variables or as finite differences for categorical (and sometimes continuous) predictors, de-363

pending on the structure of the data and the research question. Substantively, these procedures translate364

raw regression coefficients into quantities that reflect changes in the bounded outcome—for example, an 𝑥%365

change in the value of a proportion.366

There are various types of marginal effects, and their calculation can vary across software packages.367

For example, the popular emmeans package (Lenth, 2025) computesmarginal effects by holding all predictors368

at their means (MEM). In this tutorial, we will use the marginaleffects package (Arel-Bundock et al.,369

2024), which focuses on average marginal effects (AMEs) by default. AMEs summarize effects by generating370

predictions for each row of the original dataset and then averaging these predictions. This approach retains371

a strong connection to the original data while offering a straightforward summary of the effect of interest.372

One practical application of AMEs is calculating the average difference between two groups or con-373

ditions (called the risk difference). Using the avg_comparisons() function in the marginaleffects374

package (Listing 11), we can compute this metric directly. By default, the function calculates the discrete375

difference between groups. The function can also compute other effect size metrics, such as odds ratios376
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Table 5

Fluency difference
Term Contrast Mean 95% Cr.I
Fluency Fluent - Disfluent 0.057 [-0.017, 0.129]

and risk ratios, depending on the research question. This flexibility makes it a powerful tool for interpreting377

regression results in a meaningful way.378

Listing 11 Calculating the difference between probabilities with avg_comparisons()

#|
# get risk difference by default

Beta_avg_comp <- avg_comparisons(Beta_brms, comparison = "difference")

Table 5 presents the estimated difference for the fluency factor (Mean column). The difference be-379

tween the fluent and disfluent conditions is 0.06, indicating that participants who watched a fluent instructor380

scored, on average, 6% higher on the final recall test than those who watched a disfluent instructor. How-381

ever, the 95% credible interval includes 0 among the most credible values, suggesting we cannot rule out the382

possibility of a null or weakly negative effect.383

In psychology, it is common to report effect size measures like Cohen’s d (Cohen, 1977). When384

working with proportions we can calculate something similar called Cohen’s h. Taking our proportions, we385

can use the below equation (Equation 2) to calculate Cohen’s h along with the 95% Cr.I around it. Using this386

metric we see the effect size is small (0.107), 95% credible interval [-0.002, 0.361].387

ℎ = 2 ·
(
arcsin

(√
𝑝1
)
− arcsin

(√
𝑝2
) )

(2)

Posterior Predictive Check388

Figure 6 (B) shows the predictive check for our Beta model. The model does a pretty good job at389

capturing the data (The draws are now between 0-1) and the predicted values from the model follow the390

observed data. However, it could be better.391

Zero-Inflated Beta (ZIB) Regression392

A limitation of the Beta regression model is that it can only accommodate values strictly between 0393

and 1—it cannot handle values exactly equal to 0 or 1. In our dataset, we observed 9 rows where Accuracy394

equals zero. To fit a Beta regression model, we removed these values, but we have left out potentially valuable395

information from our model–especially if the end points of the scale are distinctive in some way. In our case,396

these 0s may be structural—that is, they represent real, systematic instances where participants failed to397

answer correctly (rather than random noise or measurement error). For example, the fluency of the instructor398

might be a key factor in predicting these zero responses. We will discuss two approaches for jointly modeling399

these end points with the continuous data. First, we can use a zero-inflated Beta (ZIB) model. This model400

still estimates the mean (𝜇) and precision (𝜙) of the Beta distribution for values between 0 and 1, but it also401

includes an additional parameter, 𝛼, which captures the probability of observing structural 0s.402

The zero-inflated Beta models a mixture of the data-generating process. The 𝛼 parameter uses a403

logistic regression to model whether the data is 0 or not. Substantively, this could be a useful model when we404
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think that 0s come from a process that is relatively distinct from the data that is greater than 0. For example,405

if we had a dataset with proportion of looks or eye fixations to certain areas on marketing materials, we might406

want a separate model for those that do not look at certain areas on the screen because individuals who do407

not look might be substantively different than those that look.408

We can fit a ZIB model using brms and use the marginaleffects package to make inferences409

about our parameters of interest. Before we run a zero-inflated Beta model, we will need to transform our410

data again and remove the one 1 value in our data–we can keep our 0s. Similar to our Beta regression model411

we fit in brms, we will use the bf() function to fit several models. We fit our 𝜇 and 𝜙 parameters as well as412

our zero-inflated parameter (𝛼; here labeled as zi). In brms we can use the zero_inflated_Beta family (see413

Listing 12).414

Listing 12 Fitting zib model with brm()

# keep 0 but remove 1
data_Beta_0 <- fluency_data |>

filter(Accuracy != 1)

# set up model formual for zero-inflated Beta in brm
zib_model <- bf(

Accuracy ~ Fluency, # The mean of the 0-1 values, or mu
phi ~ Fluency, # The precision of the 0-1 values, or phi
zi ~ Fluency, # The zero-or-one-inflated part, or alpha
family = zero_inflated_beta()

)

# fit zib model with brm
fit_zi <- brm(

formula = zib_model,
data = data_Beta_0,
file = "bayes_zib_model0not1"

)

Posterior Predictive Check415

The ZIB model does a bit better at capturing the structure of the data then the Beta regression model416

(see Figure 6). Specifically, the ZIB model more accurately captures the increased density of values near417

the lower end of the scale (i.e., near zero), which the standard Beta model underestimates. The ZIB model’s418

predictive distributions also align more closely with the observed data across the entire range, particularly in419

the peak and tail regions. This improved fit likely reflects the ZIB model’s ability to explicitly model excess420

0s (or near-zero values) via its inflation component, allowing it to better account for features in the data that421

a standard Beta distribution cannot accommodate.422

Predicted Probabilities and Marginal Effects423

Table 2 under the zero-inflated Beta regression column provides a summary of the posterior distribu-424

tion for each parameter. As stated before, it is preferable to back-transform our estimates to get probabilities.425

To get the predicted probabilities we can again use the avg_predictions() and avg_comparisons()426

functions from marginaleffects package (Arel-Bundock, 2024) to get predicted probabilities and the427
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Table 6

Probablity fluency difference (𝜇)
Term Contrast Mean 95% Cr.I
Fluency Fluent - Disfluent 0.044 [-0.034, 0.121]

Table 7

Probablity fluency difference (𝜙)
Term Contrast Mean 95% Cr.I
Fluency Fluent - Disfluent 2.71 [-0.869, 6.606]

probability difference between the levels of each factor. We can model the parameters separately using the428

dpar argument setting to: 𝜇, 𝜙, 𝛼. Here we look at the risk difference for Fluency under each parameter.429

Mean. As shown in Table 6, there is little evidence for an effect of Fluency – the 95% Cr.I includes430

zero, suggesting substantial uncertainty about the direction and magnitude of the effect–that is, though most431

of the posterior density supports positive effects, nil and weakly negative effects cannot be ruled out.432

Dispersion. As shown in Table 7, the posterior estimates suggest a credible effect of Fluency on433

dispersion (𝜙), with disfluent responses showing greater variability. The 95% Cr.I for the fluency contrast434

does not include zero, indicating a high probability in differences in precision.435

Zero-Inflation436

We can harness the power of marginaleffects again and plot the posterior difference between the437

fluent and disfluent conditions (see Figure 9). In Figure 9, there is evidence that watching a lecture video438

with a fluent instructor reduces the probability of a zero response by approximately 13%. The 95% Cr.I for439

this effect does not include zero, suggesting a meaningful reduction in the likelihood of zero outcomes under440

fluent instruction. We can harness the power of marginaleffects again and plot the posterior probability441

of each level (see Figure 9).442

Zero-One-Inflated Beta (ZOIB)443

The ZIB model works well if you have 0s in your data, but not 1s.6 In our previous examples we444

either got rid of both 0s and 1s (Beta regression), or removed the 1s (ZIB). Sometimes it is theoretically useful445

to model both 0s and 1s as separate processes or to consider these values as essentially similar parts of the446

continuous response, as we show later in the ordered Beta regression model. For example, this is important447

in visual analog scale data where there might be a prevalence of responses at the bounds (Kong & Edwards,448

2016), in JOL tasks (Wilford et al., 2020), or in a free-list task where individuals provide open responses to449

some question or topic which are then recoded to fall between 0-1 (Bendixen & Purzycki, 2023). Here 0s450

and 1s are meaningful; 0 means item was not listed and 1 means the item was listed first.451

Similar to our Beta and zero-inflated models above, we can fit a ZOIB model in brms quite easily452

using the zero_one_inflated_Beta family. In this model, we simultaneously estimate the mean (𝜇) and453

precision (𝜙) of the Beta distribution, a zero-one inflation parameter (𝛼) that represents the probability that454

6In cases where your data include exact 1s but no 0s, you can fit a one-inflated Beta regression model in brms by setting the coi
parameter to 1. This tells the model that all point masses occur at 1, rather than being split between 0 and 1. In other words, coi =
1 assumes that any inflation in the data is due entirely to values at 1. In our data, we have exactly one value equal to 1[^6]. While
probably not significant to alter our findings, we can model 1s with a special type of model called the zero-one-inflated Beta (ZOIB)
model (Liu & Kong, 2015) if we believe that both 0s and 1s are distinct outcomes.
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Figure 9

Visualization of the predicted difference for zero-inflated part of model

an observation is either exactly 0 or 1 (i.e., 0 or 1 vs. not 0 or 1) and a conditional one-inflation parameter (𝛾)455

that represents the probability that, given an observation is at one of the endpoints, it is 1 (i.e, 1 vs. not 1).456

This specification captures the entire range of possible values while remaining constrained between 0 and457

1. To get a better sense of how 𝛼 and 𝛾 control the distribution of values, Figure 10 presents simulated data458

across combinations of these parameters. As 𝛼 increases, we see a greater proportion of responses at the459

endpoints. As 𝛾 increases, the proportion of endpoint responses at 1 grows relative to 0, making the spikes460

at 1 more prominent as 𝛾 approaches 1. This visualization illustrates how the ZOIB model flexibly accounts461

for both the continuous portion of the distribution and the occurrence of exact 0s and 1s.462

To fit a ZOIB model we use the bf() function. We model each parameter as a function of Fluency.463

We then pass the zoib_model to our brm() function (see Listing 13). The summary of the output is in464

Table 2 (under ZOIB).465

Model Parameters466

The output for the model is lengthy because we are estimating three distinct components, each with467

their own independent responses and sub-models. All the coefficients are on the logit scale, except 𝜙 , which is468

on the log scale. Thankfully drawing inferences for all these different parameters, plotting their distributions,469

and estimating their average marginal effects looks exactly the same–all the brms and marginaleffects470

functions we used work the same.471

Predictions and Marginal Effects472

With marginaleffectswe can choose marginalize over all the sub-models, averaged across the 0s,473

continuous responses, and 1s in the data, or we can model the parameters separately using the dpar argument474

like we did above setting it to: 𝜇, 𝜙, 𝛼, 𝛾 (see below). Using avg_predictions() and not setting dpar we475
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Figure 10

Simulated data from a ZOIB model illustrating the effects of the zero-one inflation parameter (𝛼) and the
conditional one-inflation parameter (𝛾).

can get the predicted probabilities across all the sub-models. We can also plot the overall difference between476

fluency and disfluency for the whole model with plot_predictions().477

In addition, we show below how one can extract the predicted probabilities and marginal effects for478

𝛾 (and a similar process for any other model component, zoi, etc.):479

Ordered Beta Regression480

Looking at the output from the ZOIB model (Table 2), we can see how running a model like this481

can become fairly complex as it is fitting distinct sub-models for each component of the scale. The ability482

to consider 0s and 1s as distinct processes from continuous values comes at a price in terms of complexity483

and interpretability. A simplified version of the zero-one-inflated beta (ZOIB) model, known as ordered484

Beta regression (Kubinec, 2022; see also Makowski et al., 2025 for a reparameterized version called the485

Beta-Gate model), has been recently proposed. The ordered Beta regression model exploits the fact that,486

for most analyses, the continuous values (between 0-1) and the discrete outcomes (e.g., 0 or 1) are ordered.487

For example, as a covariate 𝑥 increases or decreases, we should expect the bounded outcome 𝑦 to increase488

or decrease monotonically as well from 0 to (0, 1) to 1. The ZOIB model does not impose this restriction;489

a covariate could increase and the response 𝑦 could increase in its continuous values while simultaneously490

decreasing at both end points.7 This complexity is not immediately obvious when fitting the ZOIB, nor is491

it a potential relationship that many scholars want to consider when examining how covariates influence a492

bounded scale.493

7For a more complete description of this issue, we refer the reader to Kubinec (2022).
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Listing 13 Fitting a ZOIB model with brm().

# fit the zoib model

zoib_model <- bf(
Accuracy ~ Fluency, # The mean of the 0-1 values, or mu
phi ~ Fluency, # The precision of the 0-1 values, or phi
zoi ~ Fluency, # The zero-or-one-inflated part, or alpha
coi ~ Fluency, # The one-inflated part, conditional on the 1s, or gamma
family = zero_one_inflated_beta()

)

fit_zoib <- brm(
formula = zoib_model,
data = fluency_data,
file = "bayes_zoib_model"

)

Listing 14 Extracting predicted probabilities and marginal effects for conditional-one parameter

# get average predictions for coi param
coi_probs <- avg_predictions(fit_zoib, by = c("Fluency"), dpar = "coi")
# get differene between the two conditions
coi_me <- avg_comparisons(fit_zoib, variables = c("Fluency"), dpar = "coi")

To make the response ordered, the ordered Beta regression model estimates a weighted combination494

of a standard Beta regression model for continuous responses and a logit model for the discrete values of495

the response. By doing so, the amount of distinctiveness between the continuous responses and the discrete496

end points is a function of the data (and any informative priors) rather than strictly defined as fully distinct497

processes as in the ZOIB. For some datasets, the continuous and discrete responses will be fairly distinct,498

and in others less so. To give a slightly absured example, if a value of 0 meant that the subject was a fish,499

and a value of 1 meant that the subject was now a trombone, then the ordered Beta model would no longer500

be appropriate.501

The weights that average together the two parts of the outcome (i.e., discrete and continuous) are502

determined by cutpoints that are estimated in conjunction with the data in a similar manner to what is known503

as an ordered logit model. An in-depth explanation of ordinal regression is beyond the scope of this tutorial504

(Bürkner & Vuorre, 2019; but see Fullerton & Anderson, 2021). At a basic level, ordinal regression models505

are useful for outcome variables that are categorical in nature and have some inherent ordering (e.g., Lik-506

ert scale items). To preserve this ordering, ordinal models rely on the cumulative probability distribution.507

Within an ordinal regression model it is assumed that there is a continuous but unobserved latent variable508

that determines which of 𝑘 ordinal responses will be selected. For example on a typical Likert scale from509

‘Strongly Disagree’ to ‘Strongly Agree’, you could assume that there is a continuous, unobserved variable510

called ‘Agreement’.511

While we cannot measure Agreement directly, the ordinal response gives us some indication about512

where participants are on the continuous Agreement scale. 𝑘 − 1 cutoffs are then estimated to indicate the513

point on the continuous Agreement scale at which your Agreement level is high enough to push you into the514
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next ordinal category (say Agree to Strongly Agree). Coefficients in the model estimate how much differ-515

ent predictors change the estimated continuous scale (here, Agreement). Since there’s only one underlying516

process, there’s only one set of coefficients to work with (proportional odds assumption). In an ordered Beta517

regression, three ordered categories are modeled: (1) exactly zero, (2) somewhere between zero and one,518

and (3) exactly one. In an ordered Beta regression, (1) and (2) are modeled with cumulative logits, where519

one cutpoint is the the boundary between Exactly 0 and Between 0 and 1 and the other cutpoint is the bound-520

ary between Between 0 and 1 and Exactly 1. The continuous values in the middle, 0 to 1 (3), are modeled521

as a vanilla Beta regression with parameters reflecting the mean response on the logit scale as we have de-522

scribed previously. Ultimately, employing cutpoints allows for a smooth transition between the bounds and523

the continuous values, permitting both to be considered together rather than modeled separately as the ZOIB524

requires.525

The ordered Beta regression model has shown to be more efficient and less biased than some of526

the methods discussed (Kubinec, 2022) herein and has seen increasing use across the biomedical and social527

sciences (Martin et al., 2024; Nouvian et al., 2023; Shrestha et al., 2024; Smith et al., 2024; Wilkes et al.,528

2024) because it produces only a single set of coefficient estimates in a similar manner to a standard Beta529

regression or OLS.530

Fitting an Ordered Beta Regression531

To fit an ordered Beta regression in a Bayesian context we use the ordbetareg (Kubinec, 2023)532

package. ordbetareg is a front-end to the brms package that we described earlier; in addition to the func-533

tions available in the package, most brms functions and plots, including the diverse array of regression mod-534

eling options, will work with ordbetareg models. (We note that the ordBeta model is also available as a535

maximum-likelihood variant in the R package glmmTMB.) We first load the ordbetareg package (see List-536

ing 15).537

Listing 15 Load ordbetareg

library(ordbetareg)

The ordbetareg package uses brms on the front-end so all the arguments we used previously apply538

here. Instead of the brm() function we use ordbetareg(). To fit a model where dispersion does not vary539

as a function of fluency we can use the below code (see Listing 16).540

Listing 16 Fitting ordered Beta model with ordbetareg()

ord_fit_brms <- ordbetareg(
Accuracy ~ Fluency,
data = fluency_data,
file = "bayes_ordbeta_model"

)

However, if we want dispersion to vary as a function of fluency we can easily do that (see Listing 17).541

Note the addition of the phi_reg argument in m.phi. This argument allows us to include a model that542

explicitly models the dispersion parameter. Because we are modeling 𝜙 as a function of fluency, we set the543

the argument to both.544
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Listing 17 Fitting ordered Beta model with dispersion using ordbetareg()

ord_beta_phi <- bf(Accuracy ~ Fluency, phi ~ Fluency)

m.phi <- ordbetareg(
ord_beta_phi,
data = fluency_data,
phi_reg = 'both',
file = "bayes_ordbeta_phi_model"

)

Table 8

Marginal effect for fluency in ordered Beta model
Term Contrast Mean 95% Cr.I
Fluency Fluent - Disfluent 0.06 [-0.014, 0.134]

Marginal Effects545

Table 2 presents the overall model summary (under Ordered Beta). We can use546

marginaleffects to calculate differences on the response scale that average over (or marginalize547

over) all our parameters.548

In Table 8 the credible interval is close enough to zero relative to its uncertainty that we can conclude549

there likely aren’t substantial differences between the conditions after taking dispersion and the 0s and 1s in550

our data into account.551

Cutpoints552

The model cutpoints are not reported by default in the summary output, but we can access them with553

the R package posterior (Bürkner et al., 2025) and the functions as_draws and summary_draws.554

In Table 9, cutzero is the first cutpoint (the difference between 0 and continuous values) and cutone555

is the second cutpoint (the difference between the continuous values and 1). These cutpoints are on the556

logit scale and as such the numbers do not have a simple substantive meaning. In general, as the cutpoints557

increase in absolute value (away from zero), then the discrete/boundary observations are more distinct from558

the continuous values. This will happen if there is a clear gap or bunching in the outcome around the bounds.559

This type of empirical feature of the distribution may be useful to scholars if they want to study differences560

in how people perceive the ends of the scale versus the middle. It is possible, though beyond the scope of561

this article, to model the location of the cutpoints with hierarchical (non-linear) covariates in brms.562

Table 9

Cutzero and cutone parameter summary
Parameter Mean 95% Cr.I
cutzero -2.97 [-3.56, -2.41]
cutone 1.85 [1.64, 2.08]
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Model Fit563

The best way to visualize model fit is to plot the full predictive distribution relative to the original564

outcome. Because ordered Beta regression is amixed discrete/continuousmodel, a separate plotting function,565

pp_check_ordBetareg, is included in the ordbetareg package that accurately handles the unique features566

of this distribution. The default plot in brms will collapse these two features of the outcome together, which567

will make the fit look worse than it actually is. The ordbetareg function returns a list with two plots,568

discrete and continuous, which can either be printed and plotted or further modified as ggplot2 objects569

(see Figure 11).570

Figure 11

Posterior predictive check for ordered Beta regression model. A. Discrete posterior check. B. Continuous
posterior check.

The discrete plot, which is a bar graph, shows that the posterior distribution accurately captures the571

number of different types of responses (discrete or continuous) in the data. For the continuous plot shown as572

a density plot with one line per posterior draw, the model does a very good job at capturing the distribution.573

Overall, it is clear from the posterior distribution plot that the ordered Beta model fits the data well.574

To fully understand model fit, both of these plots need to be inspected as they are conceptually distinct.575

Model Visualization. ordbetareg provides a neat visualization function called plot_heiss()576

(Ye & Heiss, 2023) that can represent dispersion in the entire outcome as a function of discrete covariates.577

This function produces a plot of predicted proportions across the range of our Fluency factor. In Figure 12578

we get predicted proportions for Fluency across the bounded scale. Looking at the figure we can see there is579

much overlap between instructors in the middle portion (𝜇) . However, we do see some small differences at580

the zero bounds.581
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Figure 12

Heiss plot of predicted probabilities across the scale (0-100)

Ordered Beta Scale582

In the ordbetareg function there is a true_bound argument. In the case where you data in not583

bounded between 0-1, you can use the argument to specify the bounds of the argument to fit the ordered Beta584

regression. For example, you data might be bounded between 1 and 7. If so, you can model it as such and585

ordbetareg will convert the model predictions back to the true bounds after estimation.586

Discussion587

The use of Beta regression in psychology, and the social sciences in general, is rare. With this588

tutorial, we hope to turn the tides. Beta regression models are an attractive alternative to models that im-589

pose unrealistic assumptions like normality, linearity, homoscedasticity, and unbounded data. Beyond these590

models, there are a diverse array of different models that can be used depending on your outcome of interest.591

Throughout this tutorial our main aim was to help guide researchers in running analyses with pro-592

portional or percentage outcomes using Beta regression and some of its alternatives. In the current example,593

we used real data from Wilford et al. (2020) and discussed how to fit these models in R, interpret model594

parameters, extract predicted probabilities and marginal effects, and visualize the results.595

Comparing our analysis with that of Wilford et al. (2020), we demonstrated that using traditional596

approaches (e.g., t-tests) to analyze accuracy data can lead to inaccurate inferences. Althoughwe successfully597

reproduced one of their key findings, our use of Beta regression and its extensions revealed important nuances598

in the results. With a traditional Beta regression model–which accounts for both the mean and the precision599

(dispersion)–we observed similar effects of instructor fluency on performance. However, the standard Beta600

model does not accommodate boundary values (i.e., 0s and 1s).601

When we applied a ZIB model, which explicitly accounts for structural 0s, we found no effect of602

fluency on the mean (𝜇) part of the model. Instead, the effect of fluency emerged in the structural zero603
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(inflated zero; 𝛼) component. This pattern was consistent when using a zero-one-inflated Beta (ZOIB)model.604

Furthermore, we fit an ordered Beta regression model (Kubinec, 2022), which appropriately models the full605

range of values, including 0s and 1s. Here, we did not observe a reliable effect of fluency on the mean once606

we accounted for dispersion.607

These analyses emphasize the importance of fitting a model that aligns with the nature of the data.608

The simplest and recommended approach when dealing with data that contains 0s and/or 1s is to fit an ordered609

Betamodel, assuming the process is truly continuous. However, if you believe the process is distinct in nature,610

a ZIB or ZOIB model might be a better choice. Ultimately, this decision should be guided by theory.611

For instance, if we believe fluency influences the structural zero part of the model, we might want to612

model this process separately using a ZIB or ZOIB. With the current dataset, fluency might affect specific613

aspects of performance (such as the likelihood of complete failure) rather than general performance levels.614

This effect could be due to participant disengagement during the disfluent lecture. If students fail to pay615

attention because of features of disfluency, they may miss relevant information, leading to a floor effect at616

the test. If this is the case, we would want to model this appropriately. However, if we believe fluency effects617

general performance levels, a model that takes in to account the entire process accounting for the 0s and 1s618

might be appropriate.619

In the discussion section of Wilford et al. (2020), they were unable to offer a tenable explanation for620

performance differences based on instructor fluency. A model that accounts for the excess 0s in the dataset621

provides one testable explanation: watching a disfluent lecture may lead to lapses in attention, resulting622

in poorer performance in that group. These lapses, in turn, contribute to the observed differences in the623

fluent condition. This modeling approach opens a promising avenue for future research–one that would have624

remained inaccessible otherwise.625

Not everyone will be eager to implement the techniques discussed herein. In such cases, the key626

question becomes: What is the least problematic approach to handling proportional data? One reasonable627

option is to fit multiple models tailored to the specific characteristics of your data. For example, if your data628

contain 0s, you might fit two models: a traditional linear model excluding the 0s, and a logistic model to629

account for the zero versus non-zero distinction. If your data contain both 0s and 1s, you could fit separate630

models for the 0s and 1s in addition to the OLS model. There are many defensible strategies to choose from631

depending on the context. However, we do not recommend transforming the values of your data (e.g., 0s to632

.01 and 1s to .99) or ignoring the properties of your data simply to fit traditional statistical models.633

In this tutorial, we demonstrated how to analyze these models from a Bayesian perspective. While we634

recognize that not everyone identifies as a Bayesian, implementing these models using a Bayesian framework635

is relatively straightforward–it requires only a single package, lowering the barrier to entry. For those who636

prefer frequentist analyses, several R packages are available. For standard Beta regression, the betareg637

package (Cribari-Neto & Zeileis, 2010) is a solid option, while more complex models such as zero-inflated638

and ordered Beta regressions can be implemented using glmmTMB (Brooks et al., 2017). For fitting zero-one639

models, there are is a new implementation in the betareg package (Cribari-Neto & Zeileis, 2010) called the640

XBX regression model (Kosmidis & Zeileis, 2025) that allows you to model these types of data.641

Conclusion642

Overall, this tutorial emphasizes the importance of modeling the data you have. Although the ex-643

ample provided is relatively simple (a one-factor model with two levels), we hope it demonstrates that even644

with a basic dataset, there is much nuance in interpretation and inference. Properly modeling your data645

can lead to deeper insights, far beyond what traditional measures might offer. With the tools introduced in646

this tutorial, researchers now have the means to analyze their data effectively, uncover patterns, make ac-647

curate predictions, and support their findings with robust statistical evidence. By applying these modeling648

techniques, researchers can improve the validity and reliability of their studies, ultimately leading to more649



BETA REGRESSION TUTORIAL 30

informed decisions and advancements in their respective fields.650
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